26 research outputs found

    Safe surgery for glioblastoma: Recent advances and modern challenges.

    Get PDF
    One of the major challenges during glioblastoma surgery is balancing between maximizing extent of resection and preventing neurological deficits. Several surgical techniques and adjuncts have been developed to help identify eloquent areas both preoperatively (fMRI, nTMS, MEG, DTI) and intraoperatively (imaging (ultrasound, iMRI), electrostimulation (mapping), cerebral perfusion measurements (fUS)), and visualization (5-ALA, fluoresceine)). In this review, we give an update of the state-of-the-art management of both primary and recurrent glioblastomas. We will review the latest surgical advances, challenges, and approaches that define the onco-neurosurgical practice in a contemporary setting and give an overview of the current prospective scientific efforts

    The PROGRAM study: awake mapping versus asleep mapping versus no mapping for high-grade glioma resections: study protocol for an international multicenter prospective three-arm cohort study.

    Get PDF
    INTRODUCTION The main surgical dilemma during glioma resections is the surgeon's inability to accurately identify eloquent areas when the patient is under general anaesthesia without mapping techniques. Intraoperative stimulation mapping (ISM) techniques can be used to maximise extent of resection in eloquent areas yet simultaneously minimise the risk of postoperative neurological deficits. ISM has been widely implemented for low-grade glioma resections backed with ample scientific evidence, but this is not yet the case for high-grade glioma (HGG) resections. Therefore, ISM could thus be of important value in HGG surgery to improve both surgical and clinical outcomes. METHODS AND ANALYSIS This study is an international, multicenter, prospective three-arm cohort study of observational nature. Consecutive HGG patients will be operated with awake mapping, asleep mapping or no mapping with a 1:1:1 ratio. Primary endpoints are: (1) proportion of patients with National Institute of Health Stroke Scale deterioration at 6 weeks, 3 months and 6 months after surgery and (2) residual tumour volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: (1) overall survival and (2) progression-free survival at 12 months after surgery; (3) oncofunctional outcome and (4) frequency and severity of serious adverse events in each arm. Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. ETHICS AND DISSEMINATION The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media. TRIAL REGISTRATION NUMBER ClinicalTrials.gov ID number NCT04708171 (PROGRAM-study), NCT03861299 (SAFE-trial)

    Synthetics and theoretical seismology

    Full text link

    The Somatic Genomic Landscape of Glioblastoma

    Get PDF
    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer

    Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas

    Get PDF
    BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastomaclose

    The Somatic Genomic Landscape of Glioblastoma

    Get PDF
    We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal canceropen40

    Greek art: Classical to Hellenistic

    No full text

    Die Nebennierenrinde

    No full text

    Lipodystrophy

    No full text
    corecore